博彩评级网-博彩网_百家乐投资_全讯网新2

position: EnglishChannel  > InnovationChina> Chinese Scientists Make Breakthrough in fNIRS Imaging Technology

Chinese Scientists Make Breakthrough in fNIRS Imaging Technology

Source: 科技日報 | 2024-02-27 15:58:06 | Author: 王曉夏


Photo?shows?the?application?of?fNIRS brain imaging equipment.?(Photo?from?official?website?of?Huichuang)

By Staff Reporters

For a long time, the evaluation and diagnosis of mental and psychosomatic diseases have been lacking objective biological indicators. Now, the application of functional near-infrared spectroscopy (fNIRS) imaging technology may help solve this problem.

A research team from Beihang University (BUAA) has developed fNIRS brain imaging equipment with over 100-channels. Based on fNIRS imaging technology, an intelligent disease diagnosis and treatment model has also been established.

Fit for purpose

High resolution imaging of brain activity in its natural state had been a challenge worldwide untill the advent of fNIRS imaging equipment, which is now considered to be a solution to this problem. The device can record brain activity as people walk, drive, talk, play a musical instrument or games, and also be used on restless children, claustrophobic patients and people who are unable to undergo MRI scans.

However, the current fNIRS equipment, with a unit price of millions of RMB, cannot effectively image the areas covered by people’s dark hair, such as the parietal lobe and occipital lobe. This is because many Westerners have light colored hair, while Asians have dark hair, and dark colors absorb 1,000 times more infrared light, said Wang Daifa, who leads the research team at BUAA.

After hundreds of experiments, setbacks and verifications, Wang’s team finally made a breakthrough in the physical limit of near-infrared ultra-light detection technology and original signal extraction technology, to overcome the challenge imposed by dark hair with their whole brain imaging technology.

Higher resolution

In 2016, Wang’s team founded Danyang Huichuang Medical Equipment Co. Ltd (Huichuang) to manufacture new equipment of high resolution imaging." After three years of efforts, we began using fNIRS imaging equipment in the clinic, initiating the development of homegrown high-end equipment in this field,” said Fu Qijun, R&D director of Huichuang.

The R&D team did not stop there. Their next goal was to improve the accuracy of fNIRS imaging. Fu said that the advantages of fNIRS imaging technology are many, but the disadvantages are also obvious. “It is accurate to only about 3 cm, while the accuracy of functional MRI (fMRI) is 3 mm,” Fu said.

Scientists have long been trying to improve the accuracy of fNIRS imaging to the level of fMRI, and in recent years, the development of artificial intelligence and deep learning have assisted to solve this problem.

After numerous attempts, Wang’s team found a way, which combines neural network-based image reconstruction frameworks and models with traditional physical models, to improve the spatial resolution of fNIRS imaging to about 5 mm.

Intelligent interpreting system

As fNIRS imaging is a new technology and outputs new type of images, several questions emerged that need answers. How to interpret the image? What are indicators of insomnia, depression or autism? What about medication?

"We want to build a model that can help doctors analyze the image information and support disease diagnosis, classification and evaluation of therapeutic effect throughout the clinical process," said Deng Hao, software development director of Huichuang.

The team has established cooperation with dozens of clinical institutions, and has collected tens of thousands of dynamic brain function data. The software developers designed a model to collect disease-related data and establish the link between data and disease to support diagnosis.

To date, fNIRS imaging technology and related models have been demonstrated in more than 800 institutions including Peking Union Medical College Hospital, Shanghai Huashan Hospital and Tsinghua University. For Wang and his team, after nearly 20 years of effort, they are on the threshold of taking a giant leap for science and humankind.

Editor:王曉夏

Top News

Energy Cooperation Gets New Direction

?Chinese President Xi Jinping sent a congratulatory message to the 7th China-Russia Energy Business Forum in Beijing on November 25, sparking enthusiastic responses from various sectors in both countries.

WEEKLY REVIEW (Dec.3-10)

Liang Wenfeng, founder and CEO of the Chinese AI firm DeepSeek, and "deep diver" Chinese geoscientist Du Mengran are on the annual "Nature's 10" list, which highlights 10 people at the heart of some of the biggest science stories of 2025.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續瀏覽

繼續瀏覽
大世界娱乐| 阿玛尼百家乐的玩法技巧和规则| 太阳城百家乐手机投注| 百家乐5式直缆打法| bet365娱乐场150| 玛多县| 赙彩百家乐官网游戏规则| 有钱人百家乐官网的玩法技巧和规则 | 百家乐筹码桌布| 明珠线上娱乐| 百家乐官网赢钱打| 真人百家乐分析软件是骗局| 大发888娱乐城888| 太阳城百家乐官网外挂| 百家乐官网投资| 新全讯网网站| 肃宁县| 百家乐官网视频麻将| 百家乐投注技巧球讯网| 海南省| 聚宝盆百家乐官网的玩法技巧和规则 | 全讯网3344555| 云鼎百家乐官网程序开发有限公司 | 博狗百家乐开户| 威尼斯人娱乐百利宫| 宾利百家乐官网游戏| 如何看百家乐路| 澳门赌场美女| 百家乐视频二人麻将| 大发888娱乐真钱游戏 官方| 百家乐官网群boaicai| 百家乐路单走势图| 大发888案件| 百家乐官网便利| 旅百家乐赢钱律| 金花百家乐官网娱乐城| 百家乐投注很不错| 万博88| 百家乐官网视| 大发888官网 888| 路单百家乐官网的玩法技巧和规则|